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1. INTRODUCTION

Finite element (FE) techniques have been extensively employed in the investigation of in-bore

projectile structural integrity (Rabem and Bannister 1991; Kaste and Wilkerson 1992; Burton 1993). For

conventional propulsion gun systems--that is, those having the projectile accelerated by gas pressur-a

generally accepted technique is to perform a quasi-static analysis (Sorensen 1991). Such an analysis

employs a force balance between the gas pressure and the inertial acceleration setback load. Standard

practice dictates that the peak pressure load be utilized when performing the analysis to subject the launch

package to a worst-case loading.

For the case of electromagnetically hunched, solid armature driven projectiles, there is no gas

propulsive force. Typically. system specifications are written such that a peak acceleration capability is

defined. Previous analysis of a cannon-caliber projectile had used pressure instead of the electromagnetic

(EM) body force load to attain an equivalent maximum acceleration (Burton 1993). In that case, this

technique was felt to be an accurate representation of the loading since the projectile armature was aft of

the sabot body such that the EM force loading was concentrated at the rear. Such an arrangement lends

itself to the analogy of a base-pushed conventional design analysis.

The projectile design developed jointly by Kaman Sciences Corp. and the Center for Electromechanics-

University of Texas at Austin (CEM-UT) for the Cannon-Caliber Electromagnetic Gun (CCEMG) Program

has a mid-riding armature/sabot configuration. CEM-UT was responsible for the initial structural and

electromagnetic design and sizing of the discarding armature. Kaman Sciences had responsibility for the

detailed structural analysis of the Integrated Launch Package (ILP) and the design and sizing of the

subprojectile. Use of a gas pressure equivalent to model the projectile EM load would not accurately

reflect the force distribution throughout the projectile body. Therefore, it was decided to adopt a body

force loading technique. This was easily accomplished with the use of the ANSYS (DeSalvo and Gorman

1989) FE analysis code which allows for nodal force loading. The gas pressure equivalent method was

also done to show the difference in the results for the two load representations.

The CCEMG ILP analyzed in this report is the first iteration of an on-going developing design

(Zielinski 1993). Consequently, not all of the dimensional details are current nor applicable to those in

the final delivered machine shop drawings.
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2. ILP GEOMETRY

The CCEMG ILP consists %, a tungsten pentrator core with a titanium fluted-flae attached for

aerodynamic stabilization (Figure 1). The subprojectile is supported in-bore by the armarur/sabot

(Figure 2). The armature configuration utilizes the "tandem contact" concept which has two separate

armature surfaces in contact with the rail. The sabot's design has some rather unique features which

increased the complexity of developing the FE geometry model.

For instance, the forward borerider has a v-shaped cut recessed into its front face which slopes to the

rear and produces some sharp angles in the model. These angles made it difficult to model the sabot using

only eight-noded brick elements while preserving a good aspect ratio within the elements. This was

especially true along the line where the V-cut intersected the cylindrical penetrator. The line along this

resulting intersection was a helical ellipse, and only with great care and effort was it possible to have

elements along the intersection that did not exhibit excessive twisting or have perverse aspect ratios.

Likewise, the aft ramp of the sabot, which has a hexagonal cross section, has very narrow elements which

were carefully tailored so as not to violate aspect ratio requirements.

To simplify the modeling, advantage was taken of projectile symmetry, so that only a quarter of the

ILP was modeled with two views of the FE geometry shown in Figures 3 and 4. The conical nosetip has

been converted to a cylinder with equivalent mass and appears orange in the figures. Similarly, the

titanium fluted-flare is incorporated as a lumped mass equivalent inside the hollow flare hub (as is shown

by the green elements in Figure 4). The fluted-flare is positioned in such a way so that the model's center

of gravity coincides with that of the actual subprojectile. Use of the lumped mass equivalents for nosetips

and rear stabilizers is a common practice that simplifies the geometry model while still accurately

reflecting the stresses developed through the rod (Rabem and Bannister 1991).

The grooved interface between the penetrator and sabot was modeled using the average density

between the two materials, tungsten and aluminum. The elastic modulus of the more compliant material,

in this case aluminum, was selected for the interface elements. The sabot and rod were rigidly attached

since no sliding was allowed between the two with the material properties taken to be those at room

temperature. Table I provides a breakdown of the mass by components as calculated by the ANSYS code.
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Figure 3. FE model of one-quarter of CCEMG ILP.

Figure 4. Reverse angle view of CCEMG ILP model.

The Following Page Intentionally Left Blank.
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Table I. Computed Mass of CCEMG ILP Components

componen Mass

Penetrwor 83.75

Flare Assembly 3.85

r abot 95.36

Total 182.96

3. ILP LOADING

The ILP was modeled using the peak loading condition which was specified by an acceleration of

190,000 g'L This inertial acceleration load was balanced against a force loading which was applied in

one case via an axial directed pressure along the rear armature contact. The other load application

technique used three-dimensional nodal force loads applied throughout the entire amatmre/sabot body.

To calculate the equivalent pressure load, Newton's second law (force equals mass times acceleation)

was used. Dividing this force value by the area of the rear armature contact over which it is applied

results in a pressure of 116 ksi (800 MPa) for the equivalent pressure load.

For the case of the nodal force loading, the magnitude of the total projectile load was provided by

CEM-UT. Their code predicts the EM body forces for a stationary (velocity = 0) armature during the

transient current pulse. Values were provided for six discrete times with the time of the peak axial force,

75.9 kips (338 kW), employed in the FE analysis. The projectile body was divided into six regions as

shown in Figure 5, with each region carying a different proportion of the overall load. The breakdown

of the axial and transvetse forces attributable to each region is provided in Table 2. The negative signs

for the rail-to-rail and insulator-to-insulator forces denote that they are acting radially inward. Also listed

in the table is the number of nodes located in each region of the FE geometry model. Lacking any further

specific guidance on the force distribution, it was decided to uniformly distribute die total force across the

nodes in a region. For example, region 5 has 100 nodes that carry 1/4 of the total axial force (due to

quarter symmetry in the axial direction), 10.1 Idps (45 kN), resulting in each node having a 101-lb (45 N)

applied load. Similarly, the transverse loads are applied with 112 the total force per regim (due to half

symmetry in the transverse planes) being uniformly distributed among the nodes.

7
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Figure 5. CCEMG ILP regions for avolication of body force loads.

Table 2. Body Force Distribution Through the CCEMG Armature/Sabot

Area Number
12 3 4 [ 5 6

7E Total

Axial Force (kips) 13.7 17.9 0.5 0.8 40.4 2.6 75.9

Rail-to-Rail Force (kips) -12.5 -1.7 -0.5 -0.1 22.7 1.4 9.3

Insulator-to-Insulator Force (kips) -1.6 -4.7 -0.1 -0.2 -12.1 -0.9 -19.6

Number of Nodes in Region 200 96 32 150 100 120 -

4. BOUNDARY CONDITIONS

When launching a projectile from an EM gun, the rails tend to be forced apart due to the in-bore EM

field (Zielinski 1988). Solid armatures are generally designed with an interference with the inner rail

surface in an attempt to ensure contact along the entire length of travel of the banrl (Price 1993).

Previous analysis of a camon caliber launcher had shown rail separation due to EM loading to be 0.030 in

(0.762 rm) (Wenst et al. 1993). However, for the bore geometry used in this analysis, an assessment of

the magnitude of rail separation was not available.

Lacking a firm knowledge of what constitutes a true representation of the boundary conditions, two

different conditions were applied along the top surface of the armature contacts (regions 5 and 6 in

Figure 5). In the first case, the armature contacts were displaced to the nominal bore diameter. Since the

armature contacts were designed with an interference fit, this boundary condition, in effect, meant that

The Following Page intendonaUy LO/ Blank.
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the leaves were compressed inward to conform with a barrel assumed to be rigid. In the second case, a

zero displacement condition was assumed. This condition allowed for no radial displacement of the

armature contact surfaces and was intended to replicate the condition of rail expansion with the armature

contacts fully extended to maintain contact. While it is understood that neither of these conditions match

actual launch conditions, their selection was intended to bound the actual launch condition that is likely

to occur.

5. RESULTS

An FE analysis was performed for five cases assuming elastic material properties with various loading

and boundary conditions. The first two cases examined had the equivalent pressure load of 116 ksi

(800 MPa) applied to the rear armature contact. Case 1 employs the rigid barrel assumption with the top

surface of the armature contacts compressed. Case 2 also has the equivalent pressure load but utilizes the

zero displacement boundary condition.

Figures 6 and 7 depict the calculated stress contours for Case 1 of the penetrator and armature/sabot,

respectively. Table 3 contains values of the peak through-stress of both the sabot and penetrator. Also

listed is the highest localized stress value found in the sabot. While the maximum stress through the

penetrator is less than its yield strength of 225 ksi (1,550 MPa), the aluminum is subjected to stresses

much in excess of its 82 ksi (565 MPa) yield value. From Fgure 7, it is seen that the entire rear armature

is subject to failure.

Similarly, Figures 8 and 9 show the stresses for Case 2. From Figure 9, it may be noted that while

the rear armature does experience through-stresses above yield, this is only true for a portion of the

structure. Table 3 shows that the zero displacement boundary condition results in an alleviated stress state

through the sabot.

Case 3 was run using a rigid barrel assumption with the distributed nodal force loading. Figures 10

and 11 are provided with the stress plots for the rod and sabot, respectively. Figure 11 shows that the rear

armature contact has high localized stresses but no through-section stresses above yield. However, the

front armature contact is subjected to a 122 ksi (838 MPa) through-stress. It was somewhat puzzling that

the analysis would predict failure of the front borerider under a predominantly axial load which acts

primarily, from Table 1, on the aft end. It was felt that the interference of the armature contacts with the

11
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barrel may be excessive to the point that the armature would be incapable of withstanding the insertion

force into the bore.

To check this hypothesis, Case 4 was run with no applied loading. Only the rigid barrel boundary

condition was applied. Figures 12 and 13 show the stress contours for this case. From Figure 13, it is

seen that high localized stresses exist in both of the armature contacts. However, only the front armature

contact has a through-section stress in excess of yield, 91 ksi (627 MPa). Therefore, assuming a rigid

barrel, the front armature contact would plastically deform when inserted into the bore. This result

suggests that the maximum interference of the armature contacts, 0.065 in (0.165 cm) in the rear and

0.040 in (0.102 cm) in the front on the radius, is excessive and should be reduced.

Case 5 was done with the zero displacement boundary condition and the distributed nodal force

loading. Figures 14 and 15 show the stress state in the projectile components, and only a small localized

area at the base of the rear amature exceeds the yield value. From Table 3, it is noted that both the

penetrator and sabot peak through-stresses are well below yield.

6. CONCLUSIONS

The analysis of Case 4 points out the need to reduce the interference of the armature contacts with

the gun barreL While it is conceded that the barrel does have some compliancy and will "give" some

when the projectile is inserted, the fact that the results show stresses 10% over yield leads to the

conclusion that the interferece should be less.

Both Cases 3 and 5 resulted in very low stresses through the penetrator and rear armature contact that

had acceptable stress levels. While Case 5 exhibited acceptable stress in the front armature contact,

Case 3 did not. However, it is felt that the elevated front armature stresses in Case 3 are a result of the

large interference with the gun bore. By reducing the interference as suggested previously, it is felt that

the stress in the front armature contact would be significantly less. Therefore, based on the analysis

results, it is felt that the CCEMG ILP with reduced armature contact interference is structurally robust.

The results of the analysis also point out the importance of accurately modeling the EM body force

loading. Comparing Case I with 3 and Case 2 with 4 in Table 3, it is readily apparent that the use of an

21
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Figure 12. Stress contours in penetrator from Case 4 analysis
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Figure 13. Stress contours in armature/sabot from Case 4 analysis.
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equivalent pressure load for a mid-riding EM armature results in significantly higher stress values.

Obviously, the more precise the magnitude of the nodal force loading, the more accurate the results of the

stress analysis will be. This lends credence to ongoing attempts to couple EM codes which predict current

density and subsequently body forces with structural FE codes. Accomplishing this will allow for very

accurate representation of the EM load on a projectile.
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